Hamiltonian Cycles in Solid Grid Graphs
نویسندگان
چکیده
A grid graph is a nite node-induced subgraph of the innnite two-dimensional integer grid. A solid grid graph is a grid graph without holes. For general grid graphs, the Hamiltonian cycle problem is known to be NP-complete. We give a polynomial-time algorithm for the Hamiltonian cycle problem in solid grid graphs, resolving a longstanding open question posed in IPS82]. In fact, our algorithm can identify Hamil-tonian cycles in quad-quad graphs, a class of graphs that properly includes solid grid graphs.
منابع مشابه
Hamiltonian Cycles in Triangular Grids
We study the Hamiltonian Cycle problem in graphs induced by subsets of the vertices of the tiling of the plane with equilateral triangles. By analogy with grid graphs we call such graphs triangular grid graphs. Following the analogy, we define the class of solid triangular grid graphs. We prove that the Hamiltonian Cycle problem is NPcomplete for triangular grid graphs. We show that with the ex...
متن کاملUnit-length embedding of cycles and paths on grid graphs
Although there are very algorithms for embedding graphs on unbounded grids, only few results on embedding or drawing graphs on restricted grids has been published. In this work, we consider the problem of embedding paths and cycles on grid graphs. We give the necessary and sufficient conditions for the existence of cycles of given length k and paths of given length k between two given vertices ...
متن کاملHamiltonian Paths in C-shaped Grid Graphs
One of the well-known NP-complete problems in graph theory is the Hamiltonian path problem; i.e., finding a simple path in the graph such that every vertex visits exactly once [5]. The two-dimensional integer grid G is an infinite undirected graph in which vertices are all points of the plane with integer coordinates and two vertices are connected by an edge if and only if the Euclidean distanc...
متن کاملEnumerating Hamiltonian Cycles
A dynamic programming method for enumerating hamiltonian cycles in arbitrary graphs is presented. The method is applied to grid graphs, king’s graphs, triangular grids, and three-dimensional grid graphs, and results are obtained for larger cases than previously published. The approach can easily be modified to enumerate hamiltonian paths and other similar structures.
متن کاملNon-Hamiltonian Holes in Grid Graphs
In this paper we extend general grid graphs to the grid graphs consist of polygons tiling on a plane, named polygonal grid graphs. With a cycle basis satisfied polygons tiling, we study the cyclic structure of Hamilton graphs. A Hamilton cycle can be expressed as a symmetric difference of a subset of cycles in the basis. From the combinatorial relations of vertices in the subset of cycles in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997